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AbstractWe examine a graphical representation of uncertain knowledge called a Bayesian net-work. The representation is easy to construct and interpret, yet has formal probabilisticsemantics making it suitable for statistical manipulation. We show how we can use therepresentation to learn new knowledge by combining domain knowledge with statisticaldata.1 IntroductionMany techniques for learning rely heavily on data. In contrast, the knowledge encoded inexpert systems usually comes solely from an expert. In this paper, we examine a knowledgerepresentation, called a Bayesian network, that lets us have the best of both worlds. Namely,the representation allows us to learn new knowledge by combining expert domain knowledgeand statistical data.A Bayesian network is a graphical representation of uncertain knowledge that most peo-ple �nd easy to construct and interpret. In addition, the representation has formal prob-abilistic semantics, making it suitable for statistical manipulation (Howard, 1981; Pearl,1988). Over the last decade, the Bayesian network has become a popular representationfor encoding uncertain expert knowledge in expert systems (Heckerman et al., 1995a). Morerecently, researchers have developed methods for learning Bayesian networks from a com-bination of expert knowledge and data. The techniques that have been developed are newand still evolving, but they have been shown to be remarkably e�ective in some domains(Cooper and Herskovits 1992; Aliferis and Cooper 1994; Heckerman et al. 1995b).Using Bayesian networks, the learning process goes as follows. First, we encode theexisting knowledge of an expert or set of experts in a Bayesian network, as is done whenbuilding a probabilistic expert system. Then, we use a database to update this knowl-edge, creating one or more new Bayesian networks. The result includes a re�nement of theoriginal expert knowledge and sometimes the identi�cation of new distinctions and relation-ships. The approach is robust to errors in the knowledge of the expert. Even when expertknowledge is unreliable and incomplete, we can often use it to improve the learning process.Learning using Bayesian networks is similar to that using neural networks. The processemploying Bayesian networks, however, has two important advantages. One, we can easilyencode expert knowledge in a Bayesian network and use this knowledge to increase thee�ciency and accuracy of learning. Two, the nodes and arcs in learned Bayesian networksoften correspond to recognizable distinctions and causal relationships. Consequently, wecan more easily interpret and understand the knowledge encoded in the representation.1
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This paper is a brief tutorial on Bayesian networks and methods for learning them fromdata. In Sections 2 and 3 we discuss the Bayesian philosophy and the representation. InSections 4 through 7, we describe methods for learning the probabilities and structure of aBayesian network. In Sections 8 and 9, we discuss methods for identifying new distinctionsabout the world and integrating these distinctions into a Bayesian network. We restrictour discussion to Bayesian and quasi-Bayesian methods for learning. An interesting andoften e�ective non-Bayesian approach is given by Pearl and Verma (1991) and Spirtes et al.(1993). Also, we limit our discussion to problem domains where variables take on discretestates. More general techniques are given in Buntine (1994) and Heckerman et al. (1995b).2 The Bayesian PhilosophyBefore we discuss Bayesian networks and how to learn them from data, it will help to reviewthe Bayesian interpretation of probability. A primary element of the language of probability(Bayesian or otherwise) is the event. By event, we mean a state of some part of our worldin some time interval in the past, present, or future. A classic example of an event is that aparticular 
ip of a coin will come up heads. A perhaps more interesting event is that goldwill close at more than $400 per ounce on January 1, 2001.Given an event e, the prevalent conception of its probability is that it is a measure of thefrequency with which e occurs, when we repeat many times an experiment with possibleoutcomes e and �e (not e). A di�erent notion is that the probability of e represents thedegree of belief held by a person that the event e will occur in a single experiment. If aperson assigns a probability of 1 to e, then he believes with certainty that e will occur. Ifhe assigns a probability of 0 to e, then he believes with certainty that e will not happen.If he assigns a probability between 0 and 1 to e, then he is to some degree unsure aboutwhether or not e will occur.The interpretation of a probability as a frequency in a series of repeat experimentsis traditionally referred to as the objective or frequentist interpretation. In contrast, theinterpretation of a probability as a degree of belief is called the subjective or Bayesianinterpretation, in honor of the Reverend Thomas Bayes, a scientist from the mid-1700s whohelped to pioneer the theory of probabilistic inference (Bayes 1958; Hacking, 1975). Aswe shall see in Section 4, the frequentist interpretation is a special case of the Bayesianinterpretation.In the Bayesian interpretation, a probability or belief will always depend on the stateof knowledge of the person who provides that probability. For example, if we were to givesomeone a coin, he would likely assign a probability of 1=2 to the event that the coin would2
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show heads on the next toss. If, however, we convinced that person that the coin wasweighted in favor of heads, he would assign a higher probability to the event. Thus, wewrite the probability of e as p(ej�), which is read as the probability of e given �. The symbol� represents the state of knowledge of the person who provides the probability.Also, in this interpretation, a person can assess a probability based on information thathe assumes to be true. For example, our coin tosser can assess the probability that the coinwould show heads on the eleventh toss, under the assumption that the same coin comes upheads on each of the �rst ten tosses. We write p(e2je1; �) to denote the probability of evente2 given that event e1 is true and given background knowledge �.Many researchers have written down di�erent sets of properties that should be satis�edby degrees of belief (e.g., Cox 1946; Good 1950; Savage 1954; DeFinetti 1970) From each ofthe lists of properties, these researchers have derived the same rules|the rules of probability.Two basic rules, from which other rules may be derived, are the sum rule, which says thatfor any event e and its complement �e,p(ej�) + p(�ej�) = 1and the product rule, which says that for any two events e1 and e2,p(e1; e2j�) = p(e2je1; �) p(e1j�)where p(e1; e2j�) denotes the probability that e1 and e2 are true given �.Other commonly used rules are often expressed in terms of variables rather than events.A variable takes on values from a collection of mutually exclusive and collectively exhaustivestates, where each state corresponds to some event. A variable may be discrete, having a�nite or countable number of states, or it may be continuous. For example, a two-stateor binary variable can be used to represent the possible outcomes of a coin 
ip; whereas acontinuous variable can be used to represent the weight of the coin. In this paper, we uselower-case letters (usually near the end of the alphabet) to represent single variables andupper-case letters to represent sets of variables. We write x = k to denote that variablex is in state k. When we observe the state for every variable in set X , we call this set ofobservations a state of X , and write X = k. Sometimes, we leave the state of a variableor set of variables implicit. The probability distribution over a set of variables X , denotedp(X j�), is the set of probabilities p(X = kj�) for all states of X .11When X contains only continuous variables, p(Xj�) is sometimes called a probability density. When Xcontains both discrete and continuous variables, p(Xj�) is sometimes called a generalized probability density.We do not make these distinctions in this paper. 3
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One common rule of probability is Bayes' theorem:p(X jY; �) = p(Y jX; �)p(Y j�) p(X j�) for p(Y j�) > 0Here, p(X j�) is the probability distribution of X before we know Y , and p(X jY; �) is theprobability distribution of X after we know Y . These distributions are sometimes calledthe priors and posteriors of X , respectively. In many cases, only the relative posterior ofX is of interest. In this case, Bayes' theorem is writtenp(X jY; �) = c p(Y jX; �) p(X j�)where c is a normalization constant. Another rule is the chain rule:p(x1; : : : ; xnj�) = nYi=1 p(xijx1; : : : ; xi�1; �)We shall see that this rule is important in the de�nition of Bayesian networks. Also, wehave the generalized sum rule: XY p(X; Y j�) = p(X j�)where PY is a generalized sum that includes integrals when some or all of the variables inY are continuous. Finally, we have the expansion rule:p(X j�) =XY p(X jY; �) p(Y j�)The Bayesian philosophy extends to decision making under uncertainty in a disciplineknown as decision theory. In general, a decision has three components: what a decisionmaker can do (his alternatives), what he knows (his beliefs), and what he wants (his prefer-ences). In decision theory, we use a decision variable to represent a set of mutually exclusiveand exhaustive alternatives, Bayesian probabilities to represent a decision maker's beliefs,and utilities to represent a decision maker's preferences. Decision theory has essentiallyone rule: maximize expected utility (MEU). This rules says that, given a set of mutuallyexclusive and exhaustive alternatives, a decision maker should (1) assign a utility to everypossible outcome of every possible alternative, (2) assign (Bayesian) probabilities to everypossible outcome given every possible alternative, and (3) choose the alternative that max-imizes his expected utility. Several researchers have shown that this rule follows from setsof compelling axioms (e.g., von Neumann and Morgenstern 1947; Savage, 1954).In practice, decision making under uncertainty can be a di�cult task. In fact, researchershave shown that people often violate the MEU rule (Tversky and Kahneman 1974). The4
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deviations are so signi�cant and predictable that some researchers have come to reject therule (Kahneman et al., 1982). Many other researchers, however, argue that the axiomsused to derive the MEU rule are too compelling to reject, and argue further that people'sdeviations from the rule make the use of decision-theoretic concepts and representations allthe more important (Howard 1990). If there's any doubt, this author has the latter view.3 Bayesian NetworksA problem domain (or universe) is just a set of variables. A Bayesian network is a model ofthe (usually uncertain) relationships among variables in a domain. More precisely, given adomain of variables U = fx1; : : : ; xng, the joint probability distribution for U is a probabilitydistribution over all the states of U . A Bayesian network for U represents a joint probabilitydistribution for U . The representation consists of a set of local conditional probabilitydistributions, combined with a set of assertions of conditional independence that allow oneto construct the global joint distribution from the local distributions.To illustrate the representation, let us consider the domain of troubleshooting a car thatwon't start. The �rst step in constructing a Bayesian network is to decide what variablesand states to model. One possible choice of variables for this domain is Battery (b) withstates good and bad, Fuel (f) with states not empty and empty, Gauge (g) with states notempty and empty, Turn Over (t) with states yes and no, and Start (s) with states yes andno. Of course, we could include many more variables (as we would in a real-world example).Also, we could model the states of one or more of these variables at a �ner level of detail.For example, we could let Gauge be a continuous variable with states ranging from 0% to100%.The second step in constructing a Bayesian network is to construct a directed acyclicgraph that encodes assertions of conditional independence. We call this graph the Bayesian-network structure. Given a domain U = fx1; : : : ; xng, we can write the joint probabilitydistribution of U using the chain rule of probability as follows:p(x1; : : : ; xnj�) = nYi=1 p(xijx1; : : : ; xi�1; �): (1)Now, for every xi, there will be some subset �i � fx1; : : : ; xng such that xi and fx1; : : : ; xngare conditionally independent given �i. That is,p(xijx1; : : : ; xi�1; �) = p(xij�i; �) (2)These conditional independencies de�ne the Bayesian-network structure. The nodes in the5
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Battery Fuel

Gauge

Turn Over
Start

p(b=bad | ξ) = 0.02

p(f=empty | ξ) = 0.05

p(g=empty | b=good, f=not empty,ξ) = 0.04
p(g=empty | b=good, f=empty,ξ) = 0.97
p(g=empty | b=bad, f=not empty,ξ) = 0.10
p(g=empty | b=bad, f=empty,ξ) = 0.99

p(t=no | b=good,ξ) = 0.03
p(t=no | b=bad,ξ) = 0.98 p(s=no | t=yes, f=not empty,ξ) = 0.01

p(s=no | t=yes, f=empty ,ξ) = 0.92
p(s=no | t=no, f=not empty ,ξ) = 1.0
p(s=no | t=no, f=empty ,ξ) = 1.0Figure 1: A Bayesian-network for troubleshooting a car that won't start. Arcs are drawnfrom cause to e�ect. The local probability distribution(s) associated with a node are shownadjacent to the node.structure correspond to variables in the domain. The parents of xi correspond to the set�i. In our example, using the ordering b, f , g, t, and s, we have the conditional indepen-dencies p(f jb; �) = p(f j�) p(tjb; f; g; �) = p(tjb; �) p(sjb; f; g; t; �) = p(sjf; t; �) (3)Consequently, we obtain the structure shown in Figure 1.The �nal step in constructing a Bayesian network is to assess the local distributionsp(xij�i; �)|one distribution for every state of �i. These distributions for our automobileexample are shown in Figure 1. Combining Equations 1 and 2, we see that a Bayesiannetwork for U always encodes the joint probability distribution for U .A drawback of Bayesian networks as de�ned is that network structure depends on vari-able order. If the order is chosen carelessly, the resulting network structure may fail toreveal many conditional independencies in the domain. As an exercise, the reader shouldconstruct a Bayesian network for the automobile troubleshooter domain using the ordering(s; t; g; f; b). Fortunately, in practice, we can often readily assert causal relationships amongvariables in a domain, and can use these assertions to construct a Bayesian-network struc-ture without preordering the variables. Namely, to construct a Bayesian network for a givenset of variables, we draw arcs from cause variables to their immediate e�ects. In almost all6
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cases, doing so results in a Bayesian network whose conditional-independence implicationsare accurate. For example, the network in Figure 1 was constructed using the assertionsthat Gauge is the direct causal e�ect of Battery and Fuel, Turn Over is the direct causale�ect of Battery, and Start is the direct causal e�ect of Turn Over and Fuel.Because a Bayesian network for any domain determines a joint probability distributionfor that domain, we can|in principle|use a Bayesian network to compute any probabilityof interest. For example, suppose we want to compute the probability distribution of Fuelgiven that the car doesn't start. From the rules of probability we havep(f js = no; �) = p(f; s = noj�)p(s = noj�) = Pb;g;t p(b; f; g; t; s= noj�)Pb;f;g;t p(b; f; g; t; s= noj�) (4)In a real-world problem with n variables, this approach is not feasible, because it entailssumming over 2n or more terms. Fortunately, we can exploit the conditional independenciesencoded in a Bayesian network to make this computation more e�cient. In this case, giventhe conditional independencies in Equation 3, Equation 4 becomesp(f js = no; �) = p(f j�)Pb p(bj�)Pt p(s = nojt; f; �)p(tjb; �)Pg p(gjb; f; �)Pf p(f j�)Pb p(bj�)Pt p(s = nojt; f; �)p(tjb; �)Pg p(gjb; f; �) (5)That is, conditional independence produces a decomposition of the joint probability distri-bution that can be used in conjunction with the distributive law to reduce the dimensionalityof the computations.The general problem of computing probabilities of interest from a (possibly implicit)joint probability distribution is called probabilistic inference. All exact algorithms for prob-abilistic inference in Bayesian networks exploit conditional independence roughly as we havedescribed, although with di�erent twists. For example, Howard and Matheson (1981), Olm-sted (1983) , and Shachter (1988) developed an algorithm that reverses arcs in the networkstructure until the answer to the given probabilistic query can be read directly from thegraph. In this algorithm, each arc reversal corresponds to an application of Bayes' theorem.Pearl (1986) developed a message-passing scheme that updates the probability distributionsfor each node in a Bayesian network in response to observations of one or more variables.Lauritzen and Spiegelhalter (1988) created an algorithm that �rst transforms the Bayesiannetwork into a tree where each node in the tree corresponds to a subset of variables inthe domain. The algorithm then exploits several mathematical properties of this tree toperform probabilistic inference. Most recently, D'Ambrosio (1991) developed an inferencealgorithm that simpli�es sums and products symbolically, as in the transformation fromEquation 4 to Equation 5.Although we can exploit assertions of conditional independence in a Bayesian network forprobabilistic inference, exact inference in an arbitrary Bayesian network is NP-hard (Cooper,7
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Battery Fuel

Start
before d

d

Start
after d

uFigure 2: A in
uence diagram (structure) for a decision of whether to change the battery,get fuel, or do nothing. The square node d represents our alternatives. The diamond nodeu represents our utilities of all the possible outcomes. The double-line arc from Start to drepresents the assertion that we know whether or not the car starts when we make decisiond.1990). Even approximate inference (for example, using Monte-Carlo methods) is NP-hard(Dagum and Luby, 1994). For many applications, however, the networks are small enough(or can be simpli�ed su�ciently) so that these complexity results are not fatal. For thoseapplications where the usual inference methods are impractical, researchers are developingtechniques that are custom tailored to particular network topologies (Heckerman 1989;Suermondt and Cooper, 1991), or particular inference queries (Ramamurthi and Agogino1988; Shachter et al. 1990; Jensen and Andersen 1990) .The in
uence diagram is an extension of the Bayesian-network representation to decisionproblems. Like the Bayesian network, an in
uence diagram contains nodes representing un-certain variables and arcs representing probabilistic dependence. In an in
uence diagram,these constructs are called chance nodes and relevance arcs, respectively. In addition, in
u-ence diagrams may contain decision nodes, which represent decision variables, and at mostone utility node, which represents a decision maker's preferences. Also, in
uence diagramsmay contain information arcs, which indicate what is known at the time a decision is made.For example, in our troubleshooting domain, suppose we have the options to replacethe battery, get fuel for the car, or do nothing. An in
uence diagram for this decision isshown in Figure 2. The square node d is a decision node and represents our alternatives.The diamond node u is the utility node. The arcs pointing to the chance (oval) nodes arerelevance arcs. The arc from Start to d is an information arc. Its presence asserts that,at the time we make the decision, we know whether or not the car starts. In general,8
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“t ails”“heads”

0 0.2 0.4 0.6 0.8 1

p(θ|ξ)

θ

(a) (b)Figure 3: (a) The outcomes of a thumbtack 
ip. (b) A probability distribution for �, thephysical probability of heads.information arcs point only to decision nodes, whereas relevance arcs point only to chancenodes.4 Learning Probabilities: The One-Variable CaseBecause Bayesian networks have a probabilistic interpretation, we can use traditional tech-niques from Bayesian statistics to learn these models from data. We discuss these techniquesin the remainder of the paper. Several of the techniques that we need can be discussed inthe context of learning the probability distribution of a single variable. In this section, weexamine this case.Consider a common thumbtack|one with a round, 
at head that can be found in mostsupermarkets. If we throw the thumbtack up in the air and let in land on a hard, 
atsurface, it will come to rest either on its point (heads) or on its head (tails), as shown inFigure 3a.2 Suppose we give the thumbtack to someone, who then 
ips it many times, andmeasures the fraction of times the thumbtack comes up heads. A frequentist would say thislong-run fraction is a probability, and would observe 
ips of the thumbtack to estimate thisprobability. In contrast, from the Bayesian perspective, we recognize the possible values ofthis fraction as a variable|call it �|whose true value is uncertain. We can express ouruncertainty about � with a probability distribution p(�j�), and update this distribution aswe observe 
ips of the thumbtack.We note that, although � does not represent a degree of belief, collections of long-runfractions like � satisfy the rules of probability. In this paper, we shall refer to � as a physical2This example is taken from Howard (1970). 9
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xm

θ

x2
x1 . . .Figure 4: A Bayesian-network structure depicting the conditional independencies associatedwith a binomial sample.probability (after Good, 1959) to distinguish it from a degree of belief.3 Figure 3 shows onepossible probability distribution for �.Now suppose we observe D = fx1; : : : ; xmg, the outcomes of m 
ips of the thumbtack.We sometimes refer to this set of observations as a database. If we knew the value of �, thenour probability for heads on any 
ip would be equal to �, no matter how many outcomeswe observe. That is, p(xl = headsjx1; : : : ; xl�1; D; �) = � (6)where xl is the outcome of the lth 
ip of the thumbtack. Similarly, we havep(xl = tailsjx1; : : : ; xl�1; D; �) = 1� � (7)In particular, the outcomes are mutually independent, given �. We can represent this con-ditional independence assertion using a Bayesian-network structure, as shown in Figure 4.In reality, we are uncertain about the value of �. In this case, we can use the expansionrule to determine our probability that the next toss of the thumbtack will come up heads:p(x = headsj�) = Z p(x = headsj�; �) p(�j�) d� = Z � p(�j�) d� � E(�j�)where E(�j�) denotes the expectation of � given �. That is, our probability for heads on thenext toss is just the expectation of �. Furthermore, suppose we 
ip the thumbtack once andobserve heads. Using Bayes' theorem, the posterior probability distribution for � becomesp(�jx = heads; �) = c p(x = headsj�; �) p(�j�) = c � p(�j�)where c is some normalization constant. That is, we obtain the posterior distribution for� by multiplying its prior distribution by the function f(�) = � and renormalizing. This3The variable � is also referred to as a frequency, objective probability, and true probability.10
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0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

x →

p(θ|ξ)

θ

p(θ|heads,ξ)

θ
0 0.2 0.4 0.6 0.8 1

θFigure 5: A graphical depiction of the use of Bayes' theorem to compute the posteriorprobability distribution of the physical probability �.procedure is depicted graphically in Figure 5. As expected, the posterior is shifted to theright and is slightly narrower. Similarly, if we observe a single tails, we obtainp(�jx = tails; �) = c (1� �) p(�j�)In general, if we observe h heads and t tails in the database D, then we havep(�jt heads; h tails; �) = c �h(1� �)t p(�j�)That is, once we have assessed a prior distribution for �, we can determine its posteriordistribution given any possible database. Note that the order in which we observe theoutcomes is irrelevant to the posterior|all that is relevant is the number of heads andthe number of tails in the database. We say that h and t are a su�cient statistic for thedatabase.In this simple example, our outcome variable has only two states (heads and tails).Now, imagine we have a discrete outcome variable x with r � 2 states. For example,this variable could represent the outcome of a roll of a loaded die (r = 6). As in thethumbtack example, we can de�ne the physical probabilities of each outcome, which wedenote �x = f�x=1; : : : ; �x=rg. We assume that each state is possible so that each �x=k > 0.In addition, we have Prk=1 �x=k = 1. Also, if we know these physical probabilities, then theoutcome of each \toss" of x will be conditionally independent of the other tosses, andp(xl = kjx1; : : : ; xl�1;�x; �) = �x=k (8)Any database of outcomes fx1; : : : ; xmg that satis�es these conditions is called an (r � 1)-dimensional multinomial sample with physical probabilities �x (Good, 1965). When r = 2,as in the thumbtack example, the sequence is said to be a binomial sample. The concept11



www.manaraa.com

of a multinomial sample (and its generalization, the random sample) will be central to theremaining discussions in this paper.Analogous to the thumbtack example, we havep(x = kj�) = Z �x=k p(�xj�) d�x � E(�x=kj�) (9)where p(x = kj�) is our probability that x = k in the next case. Note that, becausePrk=1 �x=k = 1, the distribution for �x is technically a distribution over the variables�x n f�x=kg for some k (the symbol n denotes set di�erence). Also, given any database Dof outcomes, we have p(�xjD; �) = c � rYk=1 �Nkx=k p(�xj�) (10)where Nk is the number of times x = k in D, and c is a normalization constant. Note thatthe counts N1; : : : ; Nr are a su�cient statistic for the multinomial sample.Given a multinomial sample, a user is free to assess any probability distribution for �x.In practice, however, one often uses the Dirichlet distribution because it has several conve-nient properties. The variables �x are said to have a Dirichlet distribution with exponentsN 01; : : : ; N 0r when the probability distribution of �x is given byp(�xj�) = �(Prk=1N 0k)Qrk=1 �(N 0k) rYk=1 �N 0k�1x=k ; N 0k > 0 (11)where �(�) is the Gamma function, which satis�es �(x + 1) = x�(x) and �(1) = 1. Whenthe variables �x have a Dirichlet distribution, we also say that p(�xj�) is Dirichlet. Theexponents N 0k must be greater than 0 to guarantee that the distribution can be normalized.Note that the exponents N 0k are a function of the user's state of information �. When r = 2,the Dirichlet distribution is also known as a beta distribution. The probability distributionon the left-hand-side of Figure 5 is a beta distribution with exponents N 0heads = 3 andN 0tails = 2. The probability distribution on the right-hand-side of the �gure is a betadistribution with exponents N 0heads = 4 and N 0tails = 2.From Equation 10, we see that if the prior distribution of �x is Dirichlet, then theposterior distribution of �x given database D = fx1; : : : ; xmg is also Dirichlet:p(�xjD; �) = c rYk=1 �N 0k+Nk�1x=k (12)We say that the Dirichlet distribution is closed under multinomial sampling, or that theDirichlet distribution is a conjugate family of distributions for multinomial sampling. Also,when �x has a Dirichlet distribution, the expectation of �x=k|equal to the probability that12
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x = k in the �rst observation|has a simple expression:E(�x=kj�) = p(x = kj�) = N 0kN 0 (13)where N 0 = Prk=1N 0k. As we shall see, these properties make the Dirichlet a useful priorfor learning.A survey of methods for assessing a beta distribution is given by Winkler (1967). Thesemethods include the direct assessment of the probability distribution using questions re-garding relative areas, assessment of the cumulative distribution function using fractiles,assessing the posterior means of the distribution given hypothetical evidence, and assess-ment in the form of an equivalent sample size. These methods can be generalized withvarying di�culty to the non-binary case.The equivalent-sample-size method generalizes particularly well. The method is basedon Equation 13, which says that we can assess a Dirichlet distribution by assessing theprobability distribution p(xj�) for the next observation, and N 0. In so doing, we mayrewrite Equation 11 as p(�xj�) = c � rYk=1 �N 0p(x=kj�)�1x=k (14)where c is a normalization constant. Assessing p(xj�) is straightforward. Furthermore, thefollowing two observations suggest a simple method for assessing N 0.The variance of a distribution for �x is an indication of how much the mean of �xis expected to change, given new observations. The higher the variance, the greater theexpected change. It is sometimes said that the variance is a measure of a user's con�dencein the mean for �x. The variance of the Dirichlet distribution is given byV ar(�x=kj�) = p(x = kj�)(1� p(x = kj�))N 0 + 1 (15)Thus, N 0 is a re
ection of the user's con�dence.In addition, suppose we were initially completely ignorant about a domain|that is, ourdistribution p(�xj�) was given by Equation 11 with each exponent N 0k = 0.4 Suppose wethen saw N 0 cases with su�cient statistics N 01; : : : ; N 0r. Then, by Equation 12, our priorwould be the Dirichlet distribution given by Equation 11.Thus, we can assess N 0 as an equivalent sample size: the number of observations wewould have had to have seen starting from complete ignorance in order to have the samecon�dence in �x that we actually have. For example, we would obtain the probability4This prior distribution cannot be normalized, and is sometimes called an improper prior. To be moreprecise, we should say that each exponent is equal to some number close to zero.13
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distribution for � in Figure 3 if we assessed p(headsj�) to be 3=5 and the equivalent samplesize to be �ve.So far, we have only considered a variable with discrete outcomes. In general, wecan imagine a physical probability distribution over a variable (discrete or continuous)from which database cases are drawn at random. This physical probability distributiontypically can be characterized by a �nite set of parameters. If the outcome variable isdiscrete, then the physical probability distribution has a parameter corresponding to eachphysical probability in the distribution (and, herein, we sometimes refer to these physicalprobabilities as parameters). If the outcome variable is continuous, the physical probabilitydistribution may be (e.g.) a normal distribution. In this case, the parameters would bethe mean and variance of the distribution. A database of cases drawn from a physicalprobability distribution is often called a random sample.Given such a physical probability distribution with unknown parameters, we can up-date our beliefs about these parameters given a random sample from this distribution usingtechniques similar to those we have discussed. For random samples from many nameddistributions|including normal, Gamma, and uniform distributions|there exist corre-sponding conjugate priors that o�er convenient properties for learning probabilities similarto those properties of the Dirichlet. These priors are sometimes referred to collectively asthe exponential family. The reader interested in learning about these distributions shouldread DeGroot (1970, Chapter 9).5 Learning Probabilities: Known StructureThe notion of a random sample generalizes to domains containing more than one variable aswell. Given a domain U = fx1; : : : ; xng, we can imagine a multivariate physical probabilitydistribution for U . If U contains only discrete variables, this distribution is just a �nitecollection of discrete physical probabilities. If U contains only continuous variables, this dis-tribution could be (e.g.) a multivariate-normal distribution characterized by a mean vectorand covariance matrix. Given a random sample from a physical probability distribution, wecan update our priors about the parameters of the distribution. This updating is especiallysimple when conjugate priors for the parameters are available (see DeGroot 1970).Now, however, let us consider the following wrinkle. Suppose we know that this mul-tivariate physical probability distribution can be encoded in some particular Bayesian-network structure BS . We may have gotten this information|for example|from our causalknowledge about the domain. In this section, we consider the task of learning the param-eters of BS . We discuss only the special case where all the variables in U are discrete and14
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where the random sample (i.e., database) D = fC1; : : : ; Cmg contains no missing data|that is, each case Cl consists of the observation of all the variables in U (we say that D iscomplete). In Section 8, we consider the more di�cult problem where D contains missingdata. Buntine (1994) and Heckerman and Geiger (1994) discuss the case where U maycontain continuous variables.When a database D is a random sample from a multivariate physical probability dis-tribution that can be encoded in BS , we simply say that D is a random sample from BS .As an example, consider the domain U consisting of two binary variables x and y. Let�xy ; �x�y; ��xy , and ��x�y denote the parameters (i.e., physical probabilities) for the joint spaceof U , where �x�y is the physical probability of the event where x is true and y is false, and soon. (Note that, in using the overbar, we are departing from our standard notation.) Then,saying that D is a random sample from the network structure containing no arc betweenx and y, is the assertion that the parameters of the joint space satisfy the independenceconstraints �xy = �x�y ; �x�y = �x��y ; and so on, where|for example|�x = �xy + �x�y is thephysical probability associated with the event where x is true. It is not di�cult to show thatthis assertion is equivalent to the assertion that the database D can be decomposed intotwo multinomial samples: the observations of x are a multinomial sample with parameter�x, and the observations of y are a multinomial sample with parameter �y .As another example, suppose we assert that a database for our two variable domain isa random sample from the network structure x! y. Here, there are no constraints on theparameters of the joint space. Furthermore, this assertion implies that the database is madeup of at most three binomial samples: (1) the observations of x are a binomial sample withparameter �x, (2) the observations of y in those cases (if any) where x is true are a binomialsample with parameter �yjx, and (3) the observations of y in those cases (if any) where xis false are a binomial sample with parameter �yj�x. Consequently, the occurrences of x inD are conditionally independent given �x, and y in case C are conditionally independentof the other occurrences of y in D given �yjx, �yj�x, and x in case C. We can graphicallyrepresent the conditional-independence assertions associated with these random samplesusing a Bayesian-network structure as shown in Figure 6a.Given the collection of random samples shown in Figure 6a, it is tempting to apply ourone-variable techniques to learn each parameter separately. Unfortunately, this approachis not correct when the parameters are dependent as shown in the �gure. For example, aswe see occurrences of x and update our beliefs about �x, our beliefs about �yjx and �yj�xwill also change. Suppose, however, that all of the parameters are independent, as shownin Figure 6b. Then, provided the database is complete, we can update each parameterseparately. 15
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Figure 6: (a) A Bayesian-network structure for a two-binary-variable domain fx; yg showingconditional independencies associated with the assertion that the database is a randomsample from the structure x ! y. (b) Another Bayesian-network structure showing theadded assumption of parameter independence.In the remainder of this section, we shall assume that all parameters are independent.We call this assumption|introduced by Spiegelhalter and Lauritzen (1990)|parameterindependence. In Section 8, we discuss methods for handling dependent parameters.To complete the discussion, we need some notation. Let BhS denote the assertion (orhypothesis) that a database D is a random sample from a Bayesian network structureBS . Given this network structure, let ri be the number of states of variable xi; and letqi = Qxl2�i rl be the number of states of �i. Let �ijk denote the physical probability ofxi = k given �i = j. In addition, let �ij � [rik=1f�ijkg�BS � [ni=1 [qij=1 �ijNote that the parameters �BS in conjunction with BS determine all the physical probabil-ities of the joint space.Let us assume that each variable set �ij has a Dirichlet distribution:p(�ij jBhS ; �) = c �Yk �N 0ijk�1ijk (16)where c is a normalization constant. Then, if Nijk is the number of cases in database D inwhich xi = k and �i = j, we obtainp(�ij jD;BhS; �) = c �Yk �N 0ijk+Nijk�1ijk (17)16
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where c is some other normalization constant. Furthermore, applying Equation 13 to eachmultinomial sample, we can compute the probability that each xi = k and �i = j in Cm+1,the next case to be seen after the database D:p(Cm+1jD;BhS ; �) = nYi=1 qiYj=1 N 0ijk +NijkN 0ij +Nij (18)where N 0ij =Prik=1N 0ijk and Nij =Prik=1Nijk.6 Learning StructureIn the previous section, we considered the situation where we are uncertain about the phys-ical probabilities, but certain about the network structure that encodes these probabilities.Now, suppose we are not only uncertain about the probabilities, but also uncertain aboutthe structure that encodes them. As with any set of events, we can express this uncertaintyby assigning a prior probability p(BhS j�) to each possible hypothesis BhS . Furthermore, wecan update these probabilities as we see cases. In so doing, we learn about the structure ofthe domain.As in the previous section, let BhS denote the (now uncertain) hypothesis that thedatabase D is a random sample from the Bayesian network structure BS . From Bayes'theorem, we have p(BhS jD; �) = c p(BhS j�) p(DjBhS ; �) (19)where c is a normalization constant. Also, from the product rule, we havep(DjBhS ; �) = mYl=1 p(CljC1; : : : ; Cl�1; BhS ; �) (20)We can evaluate each term on the right-hand-side of this equation using Equation 18, underthe assumption that the database D is complete. Thus, we obtain the posterior probabilityof BhS given D:p(BhS jD; �) = c � p(BhS j�) � nYi=1 qiYj=1("N 0ij1N 0ij � N 0ij1 + 1N 0ij + 1 : : : N 0ij1 +Nij1 � 1N 0ij +Nij1 � 1 # �" N 0ij2N 0ij +Nij1 � N 0ij2 + 1N 0ij +Nij1 + 1 : : : N 0ij2 +Nij2 � 1N 0ij +Nij1 +Nij2 � 1# : : :" N 0ijriN 0ij +Pri�1k=1 Nijk � N 0ijri + 1N 0ij +Pri�1k=1 Nijk + 1 : : : N 0ijri +Nijri � 1Nij +N 0ij � 1 #)= c � p(BhS j�) � nYi=1 qiYj=1 �(N 0ij)�(N 0ij +Nij) � riYk=1 �(N 0ijk +Nijk)�(N 0ijk) (21)17
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Using these posterior probabilities and Equation 18, we may compute the probabilitydistribution for the next case to be observed after we have seen a database. From theexpansion rule, we obtainp(Cm+1jD; �) =XBhS p(Cm+1jD;BhS ; �) p(BhS jD; �) (22)There are three important points to be made about this approach. One, it can hap-pen that two Bayesian-network structures represent exactly the same sets of probabilitydistributions. We say that the two structures are equivalent (Verma and Pearl, 1990). Forexample, for the three variable domain fx; y; zg, each of the network structures x! y ! z,x  y ! z, and x  y  z represents the distributions where x and z are conditionallyindependent of y. Consequently, these network structures are equivalent. As another ex-ample, a complete network structure is one that has no missing edges|that is, it encodesno assertions of conditional independence. A domain containing n variables has n! com-plete network structures: one network structure for each possible ordering of the variables.All complete network structures for a given domain represent the same joint probabilitydistributions|namely, all possible distributions|and are therefore equivalent.In general, two network structures are equivalent if and only if they have the samestructure ignoring arc directions and the same v-structures (Verma and Pearl, 1990). A v-structure is an ordered tuple (x; y; z) such that there is an arc from x to y and from z to y,but no arc between x and y. Using this characterization of network-structure equivalence,Chickering (1995) has created an e�cient algorithm for identifying all Bayesian-networkstructures that are equivalent to a given network structure.Given that BhS is the assertion that the physical probabilities for the joint space of Ucan be encoded in the network structure BS , it follows that the hypotheses associated withtwo equivalent network structures must be identical. Consequently, two equivalent networkstructures must have the same (prior and posterior) probability. For example, in the twovariable domain fx; yg, the network structures x ! y and y ! x are equivalent, and willhave the same probability. In general, this property is called hypothesis equivalence. In lightof this property, we should associate each hypothesis with an equivalence class of structuresrather than a single network structure, and our methods for learning network structureshould actually be interpreted as methods for learning equivalence classes of network struc-tures (although, for the sake of brevity, we often blur this distinction).55Hypothesis equivalence holds provided we interpret Bayesian-network structures simply as representa-tions of conditional independence. Nonetheless, stronger de�nitions of Bayesian networks exist where arcshave a causal interpretation (e.g., Pearl and Verma, 1991). Heckerman et al. (1995b) argue that, althoughit is unreasonable to assume hypothesis equivalence when working with causal Bayesian networks, it is often18
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The second important point about this approach is that, in writing Equation 22, wehave assumed that the hypothesis equivalence classes are mutually exclusive. In reality,these hypotheses are not mutually exclusive. For example, in our two-variable domain,both network structures x ! y and the empty network structure can encode parameterssatisfying the equality �y = �yjx. Therefore, the hypotheses associated with these non-equivalent network structures overlap. Nonetheless, in this approach, we assume that thepriors on parameters for any given network structure have bounded densities, and hencethe overlap of hypotheses will be of measure zero.Finally, in writing Equation 22, we have limited ourselves to hypotheses correspondingto assertions that the physical probability distribution of the joint space comes from oneparticular network structure. We can relax this assumption, assuming that the physicalprobability distribution can be encoded in a set of network structures. In this paper,however, we do not pursue this generalization.In principle, the approach we have discussed in this section is essentially all there is tolearning network structure. In practice, when the user believes that only a few alternativenetwork structures are possible, he can directly assess the priors for the possible networkstructures and their parameters, and subsequently use Equations 21 and 22 or their gen-eralizations for continuous variables and missing data. For example, Buntine (1994) hasdesigned a software system whereby a user speci�es his priors for a set of possible modelsusing Bayesian networks in a manner similar to that shown in Figure 6. The system thencompiles this speci�cation into a computer program that learns from a database.Nonetheless, the number of network structures for a domain containing n variables ismore than exponential in n. Consequently, when the user cannot exclude almost all of thesenetwork structures, there are several issues that must be considered. In particular, compu-tational constraints can prevent us from summing over all the hypotheses in Equation 22.Can we approximate p(Cm+1jD; �) accurately by retaining only a small fraction of thesehypotheses in the sum? If so, which hypotheses should we include? In addition, how can wee�ciently assign prior probabilities to the many network structures and their parameters?In the subsections that follow, we consider each of these issues.6.1 Scoring MetricsThe most important issue is whether we can approximate p(Cm+1jD; �) well using just asmall number of network-structure hypotheses. This question is di�cult to answer in the-ory. Nonetheless, several researchers have shown experimentally that even a single \good"reasonable to adopt a weaker assumption of likelihood equivalence, which says that the observations in adatabase can not help to discriminate two equivalent network structures.19
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network structure often provides an excellent approximation (Cooper and Herskovits 1992;Aliferis and Cooper 1994; Heckerman et al., 1995b). We given an example in Section 7.These results are somewhat surprising, and are largely responsible for the great deal ofrecent interest in learning Bayesian networks.Given this observation, another important consideration is how to identify \good" net-work structures. The approach that has been adopted by many researchers is to use ascoring metric in combination with a search algorithm. The scoring metric takes priorknowledge, a database, and a set of network structures, and computes the goodness of �t ofthose structures to the prior knowledge and data. The search algorithm identi�es networkstructures to be scored. In this section, we discuss scoring metrics. In Section 6.4, wediscuss search algorithms.An obvious scoring metric for a single network-structure (equivalence class) is the rela-tive posterior probability of that structure given the database. For example, we can computep(D;BhS j�) = p(BhS j�) p(DjBhS ; �) or compute a Bayes factor: p(BhS jD; �)=p(BhS0jD; �) whereBhS0 is some reference network structure such as the empty network structure. When we useEquation 21 to compute this relative posterior probability, the scoring metric is sometimescalled the Bayesian Dirichlet (BD) metric. A network structure with the highest posteriorprobability is often called a maximum a posteriori (MAP) structure. To score a set of dis-tinct network structures S we can use PBS2S p(D;BhS j�). Note that practitioners typicallycompute logarithms of the probabilities to avoid numerical under
ow.Madigan and Raferty (1994) suggest an alternative scoring metric that uses relativeposterior probability in conjunction with heuristics based on the principle of Occam's Razor.Other scoring metrics approximate the posterior-probability metric. In Section 8, wediscuss algorithms that can �nd a local maximum in the probability p(DjBhS ;�BS ; �) asa function of �BS (the physical probabilities associated with network structure BS). Wecannot use such a local maximum as a score for BS , because it will always favor the mostcomplex network structures, which place no constraints on the parameters �BS . Nonethe-less, we can use a local maximum of p(DjBhS ;�BS ; �) as a score for BS if we also penalizestructures based on their complexity. Akaike (1974) suggests the scoring metriclog p(DjM; b�BS ; �) + Dim(M)where M is a model, b�BS denotes the values of �BS that maximize the probability, andDim(M) is the number of logically independent parameters in M . This scoring metric issometimes called the A information criterion (AIC). For a Bayesian network, the penalty isgiven by Dim(BS) = nYi=1 qiYj=1 qi(ri � 1)20
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Schwarz (1978) suggests a similar scoring metric with a penalty term given by(1=2)Dim(M) log(m), where m is the number of cases in the database. This metric issometimes called the Bayesian information criterion (BIC).Another metric that approximates the posterior-probability metric is minimum descrip-tion length (MDL) (Rissanen 1987). The MDL of a network structure is the sum of thenumber of bits required to encode the model (which increases with increasing model com-plexity) and the number of bits required to encode the database given the model (whichdecreases with increasing model complexity) relative to a particular coding scheme. We notethat, in the limit, as the number of cases in the database approach in�nity, the BD metricwith uniform priors on structures, BIC, and MDL give the same relative scores (Kass andRaferty, 1993). Unfortunately, in practice, this asymptotic equivalence is rarely achieved.Finally, we can score structures based on a decision model for the domain. In such cases,we can score a network structure by extending that structure to an in
uence diagram, whichincludes a decision model for the domain.For example, suppose we wish to compute a score for the Bayesian network for medicaldiagnosis shown in Figure 7a, given a complete database of disease and symptoms. To doso, we extend this network to an in
uence diagram, such as the one shown in Figure 7b. Thedecision model represented by this in
uence diagram includes a single treatment decisionand the assertion that the patient's utility depends only on the disease and the treatmentdecision. We compute a score for the Bayesian network by processing the cases sequentially.Namely, for each case Cl in the database, we use Equation 18 to predict the probabilitydistribution over diseases in that case, given the symptoms in that case and the previouscases C1; : : : ; Cl�1. Then, we use the in
uence diagram to determine the optimal treatment.Next, from the utilities encoded in the in
uence diagram, we determine the utility of theoutcome where the patient is given the chosen treatment, but has the disease recorded inthe database for case Cl. We compute the score for the Bayesian network structure bysumming these utilities over all cases. This metric can be generalized to score multiplenetwork structures. The advantage of this decision-theoretic approach is that it optimizeswhat we indeed want to optimize: expected utility. The disadvantage is that it requiresthat we construct an in
uence diagram (i.e., decision model) for the domain.6.2 Priors on StructuresThe posterior-probability and decision-theoretic metrics require that we assign priors to allpossible network structures. In this section, we present an e�cient method for doing sodescribed by Heckerman et al. (1995b).The approach requires that the user constructs a prior-network structure for the domain.21
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(a) (b)Figure 7: (a) A Bayesian network for medical diagnosis. (b) A corresponding in
uencediagram for medical treatment.The method assumes that this structure is a user's \best guess" of the network structurethat encodes the physical probabilities.Given a prior network structure P , we compute the prior probability of BS as follows.For every variable xi in U , let �i denote the number of nodes in the symmetric di�erence of�i(BS) and �i(P )|that is, (�i(BS)[�i(P )) n (�i(BS)\�i(P )). Then, BS and the priornetwork di�er by � =Pni=1 �i arcs. We compute the prior probability by penalizing BS bya constant factor 0 < � � 1 for each such arc. That is, we setp(BhS j�) = c �� (23)where c is a normalization constant, which we can ignore. Note that this approach assignsequal priors to equivalent network structures only when the prior network structure is empty(see Heckerman et al. [1995b] for a discussion of this point).This formula is simple, as it requires only the assessment of a prior network structureand a single constant �. Nonetheless, if the user is willing, he can provide more detailedknowledge by assessing di�erent penalties for di�erent nodes xi and for di�erent parentcon�gurations of each node (Buntine, 1991). Another variant of this approach is to allowthe user to categorically assert that some arcs in the prior network must be present. Wecan again use Equation 23, except that we set to zero the priors of network structures thatdo not conform to these constraints.6.3 Priors on Network ParametersThe posterior-probability and decision-theoretic metrics also require that we assign priorsto network parameters for all possible network structures. We can also use this information22
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to compute the AIC and BIC metrics more e�ciently (see Section 8.3). Several authorshave discussed similar practical approaches for assigning these priors when many structuresare possible (Cooper and Herskovits, 1991, 1992; Buntine, 1991; Spiegelhalter et al., 1993;Heckerman et al., 1995b). In this section, we describe the approach of Heckerman et al.Their approach is based on a result from Geiger and Heckerman (1995). Namely, ifall allowed values of the physical probabilities are possible, then parameter independenceand hypothesis equivalence6 imply that the physical probabilities for complete networkstructures must have Dirichlet distributions as speci�ed in Equation 16 with the constraintN 0ijk = N 0 p(xi = k;�i = jjBhSC ; �) (24)where N 0 is the user's equivalent sample size for the domain, BhSC is the hypothesis cor-responding to any complete network structure, and p(xi = k;�i = jjBhSC ; �) is the user'sprobability that xi = k and �i = j in the �rst case to be seen in the database.Under these conditions, the priors on parameters for all complete network structuresmay be determined by (1) constructing a prior network for the �rst case to be seen (fromwhich the probabilities in Equation 24 may be computed) and (2) assessing the equivalentsample size (i.e., con�dence) in that prior network. In Section 7, we give an example of aprior network.To determine priors for parameters of incomplete network structures, Heckerman et al.(1995b) use the assumption of parameter modularity, which says that given two networkstructures BS1 and BS2, if xi has the same parents in BS1 and BS2, thenp(�ij jBhS1; �) = p(�ij jBhS2; �)for j = 1; : : : ; qi. They call this property parameter modularity, because it says that thedistributions for parameters �ij depend only on the structure of the network that is localto variable xi|namely, �ij only depends on xi and its parents. For example, considerthe network structure x ! y and the empty structure for our two-variable domain withcorresponding hypotheses Bhx!y and Bhxy . In both structures, x has the same set of parents(the empty set). Consequently, by parameter modularity, p(�xjBhx!y ; �) = p(�xjBhxy ; �).Given the assumptions of parameter modularity and independence, it is a simple matterto construct priors for the parameters of an arbitrary network structure given the priors oncomplete network structures. In particular, given parameter independence, we constructthe priors for the parameters of each node separately. Furthermore, if node xi has parents�i in the given network structure, we identify a complete network structure where xi hasthese parents, and use parameter modularity to determine the priors for this node. The6Actually, Geiger and Heckerman (1995) proved this result using only likelihood equivalence.23
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result is a special case of the BD metric, called the BDe metric, that assigns equal scoresto equivalent network structures. In Section 7, we illustrate the use of this metric.6.4 Search MethodsIn this section, we examine search methods for identifying network structures with highscores. Essentially all such search methods make use of a property of the scoring metrics thatwe call decomposability. Given a network structure for domain U , we say that a measure onthat structure is decomposable if it can be written as a product of measures, each of whichis a function only of one node and its parents. For example, from Equation 21, we see thatthe probability p(DjBhS ; �) given by the BD metric is decomposable. Consequently, if theprior probabilities of network structures are decomposable (as they are in Equation 23),then so is the BD metric. Thus, we can writep(D;BhS j�) = nYi=1 s(xij�i) (25)where s(xij�i) is only a function of xi and its parents. Most Bayesian and non-Bayesianmetrics are decomposable. Given a decomposable metric, we can compare the score fortwo network structures that di�er by the addition or deletion of arcs pointing to xi, bycomputing only the term s(xij�i) for both structures.First, let us consider the special case of �nding the network structure with the highestscore among all structures in which every node has at most one parent. For each arc xj ! xi(including cases where xj is null), we associate a weight w(xi; xj) � log s(xijxj)�log s(xij;).From Equation 25, we havelog p(D;BhS) = nXi=1 log s(xij�i) (26)= nXi=1w(xi; �i) + nXi=1 log s(xij;)where �i is the (possibly) null parent of xi. The last term in Equation 26 is the same for allnetwork structures. Thus, among the network structures in which each node has at mostone parent, ranking network structures by sum of weights Pni=1 w(xi; �i) or by score hasthe same result.Finding the network structure with the highest weight is a special case of a well-knownproblem of �nding maximum branchings described|for example|in Evans and Minieka(1991). The problem is de�ned as follows. A tree-like network is a connected directedacyclic graph in which no two edges are directed into the same node. The root of a tree-likenetwork is a unique node that has no edges directed into it. A branching is a directed forest24
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that consists of disjoint tree-like networks. A spanning branching is any branching thatincludes all nodes in the graph. A maximum branching is any spanning branching whichmaximizes the sum of arc weights (in our case, Pni=1w(xi; �i)). An e�cient polynomialalgorithm for �nding a maximum branching was �rst described by Edmonds (1967), laterexplored by Karp (1971), and made more e�cient by Tarjan (1977) and Gabow et al. (1984).These algorithms can be used to �nd the branching with the highest score regardlessof the metric we use, as long as one can associate a weight with every edge. Therefore,this algorithm is appropriate for any decomposable metric. When using metrics that assignequal scores to equivalent network structures, however, we haves(xijxj)s(xj j;) = s(xj jxi)s(xij;)Thus, for any two edges xi ! xj and xi  xj , the weights w(xi; xj) and w(xj; xi) are equal.Consequently, the directionality of the arcs plays no role for such metrics, and the problemreduces to �nding the undirected forest for which Pw(xi; xj) is a maximum. This searchcan be done using a maximum spanning tree algorithm.Now, let us consider the case where we �nd the best network from the set of all networksin which each node has no more than k parents. Unfortunately, the problem for k > 1 isNP-hard (Chickering et al. 1995). Therefore, it is appropriate to use heuristic searchalgorithms.Most of the commonly discussed search methods for learning Bayesian networks makesuccessive arc changes to the network, and employ the property of decomposability toevaluate the merit of each change. The possible changes that can be made are easy toidentify. For any pair of variables, if there is an arc connecting them, then this arc caneither be reversed or removed. If there is no arc connecting them, then an arc can be addedin either direction. All changes are subject to the constraint that the resulting networkcontains no directed cycles. We use E to denote the set of eligible changes to a graph,and �(e) to denote the change in log score of the network resulting from the modi�catione 2 E. Given a decomposable metric, if an arc to xi is added or deleted, only s(xij�i) needbe evaluated to determine �(e). If an arc between xi and xj is reversed, then only s(xij�i)and s(xj j�j) need be evaluated.One simple heuristic search algorithm is local search (e.g., Johnson, 1985). First, wechoose a graph. Then, we evaluate �(e) for all e 2 E, and make the change e for which�(e) is a maximum, provided it is positive. We terminate search when there is no e with apositive value for �(e). Using decomposable metrics, we can avoid recomputing all terms�(e) after every change. In particular, if neither xi, xj , nor their parents are changed, then�(e) remains unchanged for all changes e involving these nodes as long as the resulting25



www.manaraa.com

network is acyclic. Candidates for the initial graph include the empty graph, a randomgraph, a graph determined by one of the polynomial algorithms described previously in thissection, and the prior network.A potential problem with any local-search method is getting stuck at a local maximum.Methods for escaping local maxima include iterated hill-climbing and simulated annealing.In iterated hill-climbing, we apply local search until we hit a local maximum. Then, we ran-domly perturb the current network structure, and repeat the process for some manageablenumber of iterations.In one variant of simulated annealing described by Metropolis et al. (1953), we initializethe system at some temperature T0. Then, we pick some eligible change e at random, andevaluate the expression p = exp(�(e)=T0). If p > 1, then we make the change e; otherwise,we make the change with probability p. We repeat this selection and evaluation process �times or until we make � changes. If we make no changes in � repetitions, then we stopsearching. Otherwise, we lower the temperature by multiplying the current temperatureT0 by a decay factor 0 < 
 < 1, and continue the search process. We stop searching ifwe have lowered the temperature more than � times. Thus, this algorithm is controlled by�ve parameters: T0; �; �; 
 and �. To initialize this algorithm, we can start with the emptygraph, and make T0 large enough so that almost every eligible change is made, thus creatinga random graph. Alternatively, we may start with a lower temperature, and use one of theinitialization methods described for local search.Other methods for escaping local maxima include best-�rst search (Korf, 1993) andGibbs' sampling (see Section 8.2).7 A Real-World ExampleFigure 8 illustrates an application of these techniques to the real-world domain of ICU ven-tilator management, taken from Heckerman et al. (1995b). Figure 8a is a hand-constructedBayesian network for this domain, called the Alarm network (Beinlich et al., 1989) (theprobabilities are not shown). Figure 8c is a database of 10,000 cases that is sampled fromthe Alarm network. Figure 8b is a hypothetical prior network for the domain. Heckermanet al. (1995b) constructed this network by adding, deleting, and reversing arcs in the Alarmnetwork and by adding noise to the probabilities of the Alarm network.Figure 8d shows the most likely network structure found by local search initialized withthe prior network structure using the BDe metric, an equivalent sample size N 0 = 64, andpriors on network structures determined by Equation 23 with � = 1=(N 0 + 1). Comparingthe three network structures, we see that the learned network structure is much closer to that26
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Figure 8: (a) The Alarm network structure. (b) A prior network encoding a user's beliefsabout the Alarm domain. (c) A 10,000-case database generated from the Alarm network.(d) The network learned from the prior network and a 10,000 case database generated fromthe Alarm network. Arcs that are added, deleted, or reversed with respect to those in theAlarm network are indicated with A, D, and R, respectively. (Taken from Heckerman etal., 1995b.) 27
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of the Alarm network than that of the prior network. Furthermore, the joint distributionencoded by the learned network is much closer to that of the Alarm network than that ofthe prior network. In particular, whereas the cross entropy of the joint distributions of theprior network with respect to that of the Alarm network is 5.6, the cross entropy of thejoint distribution of the learned network with respect to that of the Alarm network is 0.03.7The learning algorithm has e�ectively used the database to \correct" the prior knowledgeof the user.8 Missing DataIn real databases, observations of one or more variables in one or more cases are typicallymissing. In this section, we consider extensions to previous methods that can handle missingdata. We caution the reader that the methods we discuss assume that whether or not anobservation is missing is independent of the actual states of the variables. For example,these methods are not appropriate for a medical database where data about drug responseis missing in those patients who became too sick to take the drug. Methods for addressingdependencies in omissions have been explored by (e.g.) Rubin (1978), Robins (1986), andPearl (1995).8.1 Fill-In MethodsFirst, let us consider the simple situation where we observe a single incomplete case C indomain U . Let Y denote the variables not observed in the case. Under the assumption ofparameter independence, we can compute the posterior distribution of �ij as follows:p(�ij jC; �) = XU p(U jC; �) p(�ij jY; C; �)= Xxi;�i 24 XUn(fxig[�i) p(U jC; �)35p(�ij jY; C; �)= Xxi;�i p(xi;�ijC) p(�ij jY; C; �)= (1� p(�i = jjC; �)) fp(�ij j�)g+riXk=1 p(xi = k;�i = jjC; �) fp(�ij jxi = k;�i = j; �)g (27)Each term in curly brackets in Equation 27 is a Dirichlet distribution. Thus, unless bothxi and all the variables in �i are observed in case C, the posterior distribution of �ij will7By way of comparison, the cross entropy of an empty network whose probabilities are determined fromthe marginals of the Alarm network with respect to that of the Alarm network is 13.6.28
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be a linear combination of Dirichlet distributions. Such distributions are sometimes calledDirichlet mixtures; and the probabilities (1�p(�i = jjC; �)) and p(xi = k;�i = jjC; �); k =1; : : : ; ri are called mixing coe�cients.If we observe two cases, then the situation becomes more complex, because the compu-tation of the mixing coe�cients involves �nding the means of Dirichlet mixtures. In general,as shown (e.g.) in Cooper and Herskovits (1992), the computational complexity of the exactcomputation of p(D;BhS j�) can be exponential in the number of missing variable entries inthe database.Thus, in practice, we require an approximation. One approach is to approximate eachcorrect posterior distribution �ij with a single Dirichlet distribution, and continue to useEquation 20 along with the formula for the mean of a Dirichlet distribution. Several suchapproximations have been described in the literature. For example, Titterington (1976)describes a method called fractional updating, wherein for each �ij , we pretend that wehave observed a fractional number of observations corresponding to that parameter set. Inparticular, he suggests the approximationp(�ij jC; �) � c riYk=1 �p(xi=k;�i=jjC;�)ijk p(�ij j�) (28)One drawback of this method is that it falsely increases the equivalent sample sizes of theDirichlet distributions associated with each �ij , because it replaces each missing datumwith a fractional sample. Cowell et al. (1995) suggest an approach that does not havethis problem. Namely, they approximate �ij by a single Dirichlet whose means and averagevariancePrik=1 V ar(�ijk)=ri are the same as those for the correct Dirichlet mixture. We notethat Titterington's approach|unlike Cowell et al.'s method|produces a scoring metric thatassigns equal scores to equivalent network structures.These approximations process the data in the database sequentially, and make use of theassumption of parameter independence and properties of the Dirichlet distribution. Othermethods|including Gibbs sampling, the EM algorithm, and gradient descent|process allthe data at once, and can handle continuous domain variables and dependent parameters.8.2 Gibbs SamplingGibbs sampling, described|for example|by Geman and Geman (1984), is a special caseof Markov chain Monte Carlo methods for approximate inference (Hastings, 1970). Givenvariables X = fx1; : : : ; xng with some joint distribution p(X j�), we can use a Gibbs samplerto approximate the expectation of any function f(X) as follows. First, we choose an initialstate of each of the variables in X somehow. Next, we pick some variable xi, unassign its29
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current state, and compute its probability distribution given the assignments to the othern � 1 variables. Then, we sample a state for xi based on this probability distribution, andcompute f(X). Finally, we iterate the previous two steps, keeping track of the averagevalue of f(X). In the limit as the number of samples approach in�nity, this average is equalto E(f(X)j�) (the expectation of f(X) with respect to the distribution p(X j�)) providedtwo conditions are met. First, the Gibbs sampler must be irreducible: The probabilitydistribution p(X) must be such that we can eventually sample any possible state of X givenany possible initial state of X . For example, if p(X) contains no zero probabilities, thenthe Gibbs sampler will be irreducible. Second, each xi must be chosen in�nitely often.In practice, an algorithm for deterministically rotating through the variables is typicallyused. Good introductions to Gibbs sampling|including methods for initialization and adiscussion of convergence|are given by York (1992) and Neal (1993).Now, suppose we have a database D = fC1; : : : ; Cmg with missing data, and we wantto approximate p(�BS jBhS ; D; �). One variant of Gibbs sampling for performing this ap-proximation goes as follows. First, we initialize the parameters �BS somehow. Second, foreach case Cl in D containing missing data, we �ll in the missing data using the assignedvalues of �BS . For example, suppose variables x3 and x7 are unobserved in case C1. We�ll in x3 by sampling from the distribution p(x3jC1;�BS ; �), and then �ll in x7 by sam-pling from the distribution p(x7jx3; C1;�BS ; �). This step can be done using any standardBayesian network inference algorithm. Third, we reassign the parameters �BS accordingto the posterior distribution p(�BS jD0; �), where D0 is the completed database. Finally, weiterate the previous two steps, and use the sampled values of �BS as an approximation forp(�BS jBhS ; D; �). Buntine (1994) discusses this approach in more detail.Gibbs sampling can also be used in place of searching over network structures. Namely,we can modify the Gibbs sampler described in the previous paragraph so that it can transi-tion from one network structure to another. For example, after each sampling pass throughthe parameters and database, the sampler can evaluate the p(BhS ; Dj�) for every structurethat is \close" to the current network structure (e.g., within one arc addition, deletion, orreversal) and sample a new network structure according to this distribution (see Madiganand Raferty, 1994).8.3 EM AlgorithmThe expectation{maximization (EM) algorithm is an approximation algorithm that can�nd a local maximum of a probability p(�j�; �) as a function of parameters � (Dempsteret al., 1977). Given a database D = fC1; : : : ; Cmg with missing data, we can approximatep(DjBhS ; �) as the local maximum for p(DjBhS ;�BS ; �) found by the EM algorithm. Like the30
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Gibbs sampler, the EM algorithm can handle models with missing data, continuous domainvariables, and dependent parameters. Although the EM algorithm tends to provide a lessaccurate approximation, it typically converges more quickly than a Gibbs sampler.The EM algorithm can be viewed as a deterministic version of the Gibbs sampler. Likethe Gibbs sampler, we begin the approximation of p(DjBhS ; �) by assigning values to �BSsomehow. Next, rather than sample a complete database D0, we compute the expectedsu�cient statistics for the missing entries in the database. In particular, we computeE(Nijkj�BS ; �) = mXl=1 p(xi = k;�i = jjCl;�BS ; �) (29)When xi and all the variables in �i are observed in case Cl, the term for this case requiresa trivial computation: it is either zero or one. Otherwise, we can use any Bayesian networkinference algorithm to evaluate the term. This computation is called the expectation stepof the EM algorithm.Next, rather than sample new values for �BS , we use the expected su�cient statisticsas if they were actual su�cient statistics from a database D0, and set the new values of�BS to be the modes of the posterior distribution p(�BS jD0; BhS ; �). For example, if theparameters �BS have a Dirichlet distribution, then we haveMode(�ijkj�) = N 0ijk + E(Nijkj�BS ; �)� 1N 0ij + E(Nijj�BS ; �)� riThis mode exists provided N 0ijk +E(Nijkj�BS ; �) > 1; k = 1; : : : ; ri. (If not, we can use theexpectation of �ijk in its place.) This assignment is called the maximization step of the EMalgorithm.Dempster (1977) showed that, under certain regularity conditions, iteration of the ex-pectation and maximization steps will converge to a local maximum of the probabilityp(DjBhS ;�BS ; �).8.4 General Optimization MethodsTo use Gibbs sampling or the EM algorithm in practice, we need to compute the distribu-tions p(�BS jD0; BhS ; �) e�ciently. These computations are e�cient provided the parameters�BS have a Dirichlet distribution or some other distribution from the exponential family.When the distributions do not have this form, we can use general optimization methods tomaximize p(DjBhS ;�BS ; �) (Gill et al. 1981; Press et al. 1992).Many of these approaches|for example, gradient descent, conjugate gradient, and quasi-Newton methods|exploit derivatives of the function to be maximized to speed up conver-gence. In some situations, these derivatives can be computed e�ciently in closed form.31
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Buntine (1994) discusses such methods in detail. Here, we mention the case where allvariables in U are discrete. In this situation, Russell et al. (1994) have shown that@ log p(DjBhS;�BS ; �)@�ijk = E(Nijkj�BS ; �)�ijkwhere E(Nijkj�BS ; �) is the expected su�cient statistic given by Equation 29. As notedin the previous section, this term may be computed by any standard Bayesian networkinference algorithm.9 Learning New VariablesIn a database with missing data, a particular variable may be observed in some cases, or itmay never be observed. In the latter situation, we say that the variable is hidden.Any of the methods described in the previous section can be used to learn Bayesiannetworks containing identi�ed hidden variables. The network structure may be �xed andonly the physical probabilities uncertain, or both the network structure and parametersmay be uncertain. One example of learning the probabilities of a �xed structure with hid-den variables is the AutoClass algorithm of Cheeseman and Stutz (1995), which performsunsupervised classi�cation. The model underlying the algorithm is a Bayesian network witha single hidden variable whose states correspond to the unknown classes. The number ofstates of the hidden variable is uncertain and has a prior distribution. Also, this hidden vari-able renders sets of observable variables conditionally independent. The algorithm searchesover variations of this model (including the number of states of the hidden variable), us-ing a version of the EM algorithm to approximate the posterior probability of each modelvariation.In addition, we can use methods for learning with missing data to identify (under un-certainty) the existence of new variables. Namely, we hypothesize a mutually exclusive andexhaustive set of Bayesian-network structures, some containing hidden variables and somenot. We assign priors to each structure and its parameters, and then update these priorswith data using one of the described algorithms for handling missing data.10 Pointers to the LiteratureLike all tutorials, this tutorial is incomplete. For those readers interested in learning moreabout graphical models and methods for learning them, we o�er the following additionalreferences. A more detailed guide to the literature can be found in Buntine (1995).32
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Charniak (1991) provides an easy-to-read introduction to the Bayesian-network repre-sentation. Spiegelhalter et al. (1993) and Heckerman et al. (1995b) give simple discussionsof methods for learning Bayesian networks for domains containing only discrete variables.Buntine (1994) and Heckerman and Geiger (1994) provide more detailed discussions. Exper-imental comparisons of di�erent learning approaches can be found in Cooper and Herskovits(1992), Aliferis and Cooper (1994), Lauritzen et al. (1994), Cowell et al. (1995), and Heck-erman et al. (1995b).In addition to directed models, researchers have also explored graphs containing undi-rected edges as a knowledge representation. These representations are discussed (e.g.) inLauritzen (1982), Verma and Pearl (1990), and Frydenberg (1990). Bayesian methods forlearning such models from data are described by Dawid and Lauritzen (1993) and Buntine(1994).Finally, several software systems for learning graphical models have been implemented.Thomas, Spiegelhalter, and Gilks (1992) have created a system that takes a learning problemspeci�ed as a Bayesian network and compiles this problem into a Gibbs-sampler computerprogram. Badsberg (1992) and H�jsgaard et al. (1994) have built systems that can learndirected, undirected, and mixed graphical models using a variety of scoring metrics.AcknowledgmentsI thank David Chickering, Eric Horvitz, Chris Meek, Koos Rommelse, and Padhraic Smythfor their comments on earlier versions of this manuscript.References[Akaike, 1974] Akaike, H. (1974). A new look at the statistical model identi�cation. IEEETransactions on Automatic Control, 19:716{723.[Aliferis and Cooper, 1994] Aliferis, C. and Cooper, G. (1994). An evaluation of an algo-rithm for inductive learning of Bayesian belief networks using simulated data sets. InProceedings of Tenth Conference on Uncertainty in Arti�cial Intelligence, Seattle, WA,pages 8{14. Morgan Kaufmann.[Badsberg, 1992] Badsberg, J. (1992). Model search in contingency tables by CoCo. InDodge, Y. and Wittaker, J., editors, Computational Statistics, pages 251{256. PhysicaVerlag, Heidelberg. 33
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